Calcium regulation of myogenesis by differential calmodulin inhibition of basic helix-loop-helix transcription factors.

نویسندگان

  • Jannek Hauser
  • Juha Saarikettu
  • Thomas Grundström
چکیده

The members of the MyoD family of basic helix-loop-helix (bHLH) transcription factors are critical regulators of skeletal muscle differentiation that function as heterodimers with ubiquitously expressed E-protein bHLH transcription factors. These heterodimers must compete successfully with homodimers of E12 and other E-proteins to enable myogenesis. Here, we show that E12 mutants resistant to Ca(2+)-loaded calmodulin (CaM) inhibit MyoD-initiated myogenic conversion of transfected fibroblasts. Ca(2+) channel blockers reduce, and Ca(2+) stimulation increases, transcription by coexpressed MyoD and wild-type E12 but not CaM-resistant mutant E12. Furthermore, CaM-resistant E12 gives lower MyoD binding and higher E12 binding to a MyoD-responsive promoter in vivo and cannot rescue myogenic differentiation that has been inhibited by siRNA against E12 and E47. Our data support the concept that Ca(2+)-loaded CaM enables myogenesis by inhibiting DNA binding of E-protein homodimers, thereby promoting occupancy of myogenic bHLH protein/E-protein heterodimers on promoters of myogenic target genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5.

Skeletal muscle differentiation is controlled by interactions between myocyte enhancer factor-2 (MEF2) and myogenic basic helix-loop-helix transcription factors. Association of MEF2 with histone deacetylases (HDAC) -4 and -5 results in repression of MEF2 target genes and inhibition of myogenesis. Calcium/calmodulin-dependent protein kinase (CaMK) signaling promotes myogenesis by disrupting MEF2...

متن کامل

A novel type of calmodulin interaction in the inhibition of basic helix-loop-helix transcription factors.

Calmodulin is the predominant intracellular receptor for Ca(2+) signals, mediating the regulation of numerous cellular processes. Previous studies have shown that calcium-loaded calmodulin can bind to and inhibit the activity of certain basic helix-loop-helix (bHLH) transcription factors. The basic sequence within the bHLH domain is the primary target for calmodulin binding, and sequences modul...

متن کامل

Molecular evolution of the MyoD family of transcription factors.

Myogenesis in skeletal muscle is a cascade of developmental events whose initiation involves the MyoD family of transcription factors. Evolutionary analyses of amino acid sequences of this family of transcriptional activators suggest that the vertebrate genes MyoD1, myf-5, Myog (myogenin), and myf-6 were derived by gene duplications from a single ancestral gene. A common genetic origin predicts...

متن کامل

Genetic evidence for pax-3 function in myogenesis in the nematode Pristionchus pacificus.

PAX3 is a member of the PAX3/7 subfamily of the paired box proteins. In vertebrates, Pax3 is essential for skeletal myogenesis by activating a cascade of transcriptional events that are necessary and sufficient for skeletal myogenesis. Four related basic helix-loop-helix transcription factors, MyoD, Myf5, Mrf4, and Myogenin, are targets of PAX3 and serve as myogenic regulatory factors. Although...

متن کامل

A MODEL FOR THE BASIC HELIX- LOOPHELIX MOTIF AND ITS SEQUENCE SPECIFIC RECOGNITION OF DNA

A three dimensional model of the basic Helix-Loop-Helix motif and its sequence specific recognition of DNA is described. The basic-helix I is modeled as a continuous ?-helix because no ?-helix breaking residue is found between the basic region and the first helix. When the basic region of the two peptide monomers are aligned in the successive major groove of the cognate DNA, the hydrophobi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 19 6  شماره 

صفحات  -

تاریخ انتشار 2008